17 research outputs found

    HMMs for Anomaly Detection in Autonomous Robots

    Get PDF
    Detection of anomalies and faults is a key element for long-term robot autonomy, because, together with subsequent diagnosis and recovery, allows to reach the required levels of robustness and persistency. In this paper, we propose an approach for detecting anomalous behaviors in autonomous robots starting from data collected during their routine operations. The main idea is to model the nominal (expected) behavior of a robot system using Hidden Markov Models (HMMs) and to evaluate how far the observed behavior is from the nominal one using variants of the Hellinger distance adopted for our purposes. We present a method for online anomaly detection that computes the Hellinger distance between the probability distribution of observations made in a sliding window and the corresponding nominal emission probability distri- bution. We also present a method for onine anomaly detection that computes a variant of the Hellinger distance between two HMMs representing nominal and observed behaviors. The use of the Hellinger distance positively impacts on both detection performance and interpretability of detected anomalies, as shown by results of experiments performed in two real-world application domains, namely, water monitoring with aquatic drones and socially assistive robots for elders living at home. In particular, our approach improves by 6% the area under the ROC curve of standard online anomaly detection methods. The capabilities of our online method to discriminate anomalous behaviors in real-world applications are statistically proved

    A generative spectral model for semantic mapping of buildings

    No full text

    Enhancing Door-Status Detection for Autonomous Mobile Robots during Environment-Specific Operational Use

    Full text link
    Door-status detection, namely recognizing the presence of a door and its status (open or closed), can induce a remarkable impact on a mobile robot's navigation performance, especially for dynamic settings where doors can enable or disable passages, changing the topology of the map. In this work, we address the problem of building a door-status detector module for a mobile robot operating in the same environment for a long time, thus observing the same set of doors from different points of view. First, we show how to improve the mainstream approach based on object detection by considering the constrained perception setup typical of a mobile robot. Hence, we devise a method to build a dataset of images taken from a robot's perspective and we exploit it to obtain a door-status detector based on deep learning. We then leverage the typical working conditions of a robot to qualify the model for boosting its performance in the working environment via fine-tuning with additional data. Our experimental analysis shows the effectiveness of this method with results obtained both in simulation and in the real-world, that also highlight a trade-off between costs and benefits of the fine-tuning approach.Comment: Preprint submitted for revision at ICRA 202

    Robust Frequency-Based Structure Extraction

    No full text
    State of the art mapping algorithms can produce high-quality maps. However, they are still vulnerable to clutter and outliers which can affect map quality and in consequence hinder the performance of a robot, and further map processing for semantic understanding of the environment. This paper presents ROSE, a method for building-level structure detection in robotic maps. ROSE exploits the fact that indoor environments usually contain walls and straight-line elements along a limited set of orientations. Therefore metric maps often have a set of dominant directions. ROSE extracts these directions and uses this information to segment the map into structure and clutter through filtering the map in the frequency domain (an approach substantially underutilised in the mapping applications). Removing the clutter in this way makes wall detection (e.g. using the Hough transform) more robust. Our experiments demonstrate that (1) the application of ROSE for decluttering can substantially improve structural feature retrieval (e.g., walls) in cluttered environments, (2) ROSE can successfully distinguish between clutter and structure in the map even with substantial amount of noise and (3) ROSE can numerically assess the amount of structure in the map.ILIA
    corecore